Pronounced muscle deoxygenation during supramaximal exercise under simulated hypoxia in sprint athletes.

نویسندگان

  • Kazuo Oguri
  • Hajime Fujimoto
  • Hiroyuki Sugimori
  • Kei Miyamoto
  • Toshiki Tachi
  • Sachio Nagasaki
  • Yoshihiro Kato
  • Toshio Matsuoka
چکیده

The purpose of this study was to determine whether acute hypoxia alters the deoxygenation level in vastus lateralis muscle during a 30 s Wingate test, and to compare the muscle deoxygenation level between sprint athletes and untrained men. Nine male track sprinters (athletic group, VO2max 62.5 ± 4.1 ml/kg/min) and 9 healthy untrained men (untrained group, VO2max 49.9 ± 5.2 ml·kg(-1)·min(-1)) performed a 30 s Wingate test under simulated hypoxic (FIO2 = 0.164 and PIO2 = 114 mmHg) and normoxic conditions. During the exercise, changes in oxygenated hemoglobin (OxyHb) in the vastus lateralis were measured using near infrared continuous wave spectroscopy. Decline in OxyHb, that is muscle deoxygenation, was expressed as percent change from baseline. Percutaneous arterial oxygen saturation (SpO2), oxygen uptake (VO2), and ventilation (VE) were measured continuously. In both groups, there was significantly greater muscle deoxygenation, lower SpO2, lower peakVO2, and higher peakVE during supramaximal exercise under hypoxia than under normoxia, but no differences in peak and mean power output during the exercise. Under hypoxia, the athletic group experienced significantly greater muscle deoxygenation, lower SpO2, greater decrement in peakVO2 and increment in peakVE during the exercise than the untrained group. When the athletic and untrained groups were pooled, the increment of muscle deoxygenation was strongly correlated with lowest SpO2 in the 30 s Wingate test under hypoxia. These results suggest that acute exposure to hypoxia causes a greater degree of peripheral muscle deoxygenation during supramaximal exercise, especially in sprint athletes, and this physiological response would be explained mainly by lower arterial oxygen saturation. Key pointsThe deoxygenation trends in the vastus lateralis muscle during 30 s Wingate test in track sprinters and untrained men under simulated hypoxic and normoxic conditions was investigated using near infrared spectroscopy.Acute hypoxia caused a greater degree of peripheral muscle deoxygenation than normoxia, whereas there were no changes in performance such as power output during 30 s Wingate test.Sprint athletes show a greater degree of peripheral muscle deoxygenation during 30 s Wingate test in hypoxia when compared with untrained subjects.A larger difference in muscle deoxygenation between hypoxia and normoxia is accompanied by lowest SpO2 at the 30 s Wingate test in hypoxia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in Muscle and Cerebral Deoxygenation and Perfusion during Repeated Sprints in Hypoxia to Exhaustion

During supramaximal exercise, exacerbated at exhaustion and in hypoxia, the circulatory system is challenged to facilitate oxygen delivery to working tissues through cerebral autoregulation which influences fatigue development and muscle performance. The aim of the study was to evaluate the effects of different levels of normobaric hypoxia on the changes in peripheral and cerebral oxygenation a...

متن کامل

Variations in Hypoxia Impairs Muscle Oxygenation and Performance during Simulated Team-Sport Running

Purpose: To quantify the effect of acute hypoxia on muscle oxygenation and power during simulated team-sport running. Methods: Seven individuals performed repeated and single sprint efforts, embedded in a simulated team-sport running protocol, on a non-motorized treadmill in normoxia (sea-level), and acute normobaric hypoxia (simulated altitudes of 2,000 and 3,000 m). Mean and peak power was qu...

متن کامل

Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans.

The present study investigated whether blood lactate removal after supramaximal exercise and fatigue indexes measured during continuous and intermittent supramaximal exercises are related to the maximal muscle oxidative capacity in humans with different training status. Lactate recovery curves were obtained after a 1-min all-out exercise. A biexponential time function was then used to determine...

متن کامل

Impaired skeletal muscle blood flow control with advancing age in humans: attenuated ATP release and local vasodilation during erythrocyte deoxygenation.

RATIONALE Skeletal muscle blood flow is coupled with the oxygenation state of hemoglobin in young adults, whereby the erythrocyte functions as an oxygen sensor and releases ATP during deoxygenation to evoke vasodilation. Whether this function is impaired in humans of advanced age is unknown. OBJECTIVE To test the hypothesis that older adults demonstrate impaired muscle blood flow and lower in...

متن کامل

Repeated sprint training in normobaric hypoxia

Repeated sprint ability (RSA) is a critical success factor for intermittent sport performance. Repeated sprint training has been shown to improve RSA, we hypothesised that hypoxia would augment these training adaptations. Thirty male well-trained academy rugby union and rugby league players (18.4 ± 1.5 years, 1.83 ± 0.07 m, 88.1 ± 8.9 kg) participated in this single-blind repeated sprint traini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of sports science & medicine

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 2008